Abstract
In this work, the phosphomolybdate (HPMo) modification strategy was applied to improve the N2 selectivity of MnCo-BTC@SiO2 catalyst for the selective catalytic reduction of NOx, and further, the mechanism of HPMo modification on enhanced catalytic performance was explored. Among MnCo-BTC@SiO2-x catalysts with different HPMo concentrations, MnCo-BTC@SiO2-0.75 catalyst exhibited not only the highest NH3-SCR performance (∼95% at 200-300°C) but also the best N2 selectivity (exceed 80% at 100-300°C) due to the appropriate redox capacity, greater surface acidity. X-ray photoelectron spectrometer (XPS) and temperature programmed reduction of H2 (H2-TPR) results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo5+ to Mn4+/Mn3+ and prevent the excessive oxidation of ammonia adsorption species. NH3 temperature-programmed desorption of (NH3-TPD) results showed that the modification with HPMo could significantly improve the surface acidity and NH3 adsorption, which enhance the catalytic activity and N2 selectivity. In-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) revealed that modification with HPMo increased significantly the amount of adsorbed NH3 species on the Bronsted acid site and CB/CL, it suppressed the production of N2O by inhibiting the production of NH species, the deep dehydrogenation of ammonia adsorption species. This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N2 selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.