Abstract

Green carbon quantum dots (CQDs) were fabricated through microplasma-liquid interactions, involving the treatment of an orange juice solution at atmospheric pressure and room temperature. Morphological analyses of the CQDs revealed a spherical shape with an average size of approximately 2.5 nm. The emission peak at a wavelength of 440 nm was observed for the blue emissive CQDs, with an excitation wavelength of 350 nm. The CQDs exhibited excellent luminescence activity, with emission dependent on the excitation wavelength, shifting towards longer wavelengths. The Raman spectrum of the CQDs displayed two peaks at 1425.3 and 1625.4 cm−1, representing predominantly disorder and graphitic bands. These green-synthesized CQDs possess tunable luminescence and biocompatibility, making them promising candidates for potential applications in biolabelling, antibacterial agents and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.