Abstract
AbstractTwo fully non‐fused small‐molecule acceptors BTIC‐1 and BTIC‐2 are reported for application in near‐infrared organic photodetectors (NIR OPDs). Both acceptors contain the same conjugated backbone but differing sidechain regiochemistry, affording significant differences in their optical properties. The head‐to‐head arrangement of BTIC‐2 results in a reduction of optical band gap of 0.17 eV compared to BTIC‐1, which contains a head‐to‐tail arrangement, with absorption spanning the visible and near‐IR regions up to 900 nm. These differences are rationalized on the basis of non‐covalent intramolecular interactions facilitating a more co‐planar conformation for BTIC‐2. OPDs based on PM6:BTIC‐2 deliver a low dark current density of 2.4 × 10−7 A cm−2, leading to a superior specific detectivity of 1.7 × 1011 Jones at 828 nm at ‐2 V. The optimized device exhibits an ultrafast photo response of 2.6 µs and a high ‐3 dB cut‐off frequency of 130 kHz. This work demonstrates that fully non‐fused small‐molecule acceptors offer competitive device performance for NIR OPDs compared to fused‐ring electron acceptors, but with reduced synthetic complexity. Furthermore, the study presents an efficient strategy to enhance device performance by varying conformational locks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.