Abstract

Architected Cu/reduced graphene oxide (rGO) heterostructures are achieved by electrodepositing copper on filament-printed rGO scaffolds. The Cu coating perfectly contours the printed rGO structure, but isolated Cu particles also permeate inside the filaments. Although the Cu deposition conveys a certain mass augment, the three-dimensional (3D) structures remain reasonably light (bulk density ≅ 0.42 g·cm-3). The electrical conductivity (σe) of the Cu/rGO structure (∼8 × 104 S·m-1) shows a notable increment compared to σe of the rGO structure (∼2 × 102 S·m-1). The effect on the scaffold robustness is also notable with an increase of the compressive strength by nearly 10 times (from 20 kPa of the rGO scaffold to 150 kPa of the Cu/rGO structure) and cyclability as well. The improved thermal conductivity of the Cu-coated scaffolds (∼4 times higher), in addition to the σe and strength improvements, suggests that 3D Cu/rGO structures could be suitable assemblies for integration into thermal dissipation systems, particularly as thermal interface materials, for compact electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.