Abstract

Remaining useful life (RUL) prediction as the key technique of prognostics and health management (PHM) has been extensively investigated. The application of data-driven methods in RUL prediction has advanced greatly in recent years. However, a large number of model parameters, low prediction accuracy, and lack of interpretability of prediction results are common problems of current data-driven methods. In this paper, we propose a Physics-Informed Neural Networks (PINNs) with Self-Attention mechanism-based hybrid framework for aircraft engine RUL prognostics. Specifically, the self-attention mechanism is employed to learn the differences and interactions between features, and reasonably map high-dimensional features to low-dimensional spaces. Subsequently, PINN is utilized to regularize the end-to-end prediction network, which maps features to RUL. The RUL prediction framework termed AttnPINN has verified its superiority on the Commercial Modular AeroPropulsion System Simulation (C-MAPSS) dataset. It achieves state-of-the-art prediction performance with a small number of parameters, resulting in computation-light features. Furthermore, its prediction results are highly interpretable and can accurately predict failure modes, thereby enabling precise predictive maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call