Abstract

Roller bearing degradation features fractal characteristics such as self-similarity and long-range dependence (LRD). However, the existing remaining useful life (RUL) prediction models are memoryless or short-range dependent. To this end, we propose a RUL prediction model based on fractional Brownian motion (FBM). Bearing faults can happen in different places, and thus their degradation features are difficult to extract accurately. Through variational mode decomposition (VMD), the original degradation feature is decomposed into several components of different frequencies. The monotonicity, robustness and trends of the different components are calculated. The frequency component with the best metric values is selected as the training data. In this way, the performance of the prediction model is hugely improved. The unknown parameters in the degradation model are estimated by the maximum likelihood algorithm. The Monte Carlo method is applied to predict the RUL. A case study of a bearing is presented and the prediction performance is evaluated using multiple indicators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call