Abstract

To develop a cost-effective condition-based maintenance strategy, accurate prediction of the Remaining Useful Life (RUL) is the key. It is known that many failure mechanisms in engineering can be traced back to some underlying degradation processes. This article proposes a two-stage prognostic framework for individual units subject to hard failure, based on joint modeling of degradation signals and time-to-event data. The proposed algorithm features a low computational load, online prediction, and dynamic updating. Its application to automotive battery RUL prediction is discussed in this article as an example. The effectiveness of the proposed method is demonstrated through a simulation study and real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.