Abstract

Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.