Abstract

Breathing is irregular during rapid eye-movement (REM) sleep, whereas it is stable during non-REM sleep. Why this is so remains a mystery. We propose that irregular breathing has a cortical origin and reflects the mental content of dreams, which often accompany REM sleep. We tested 21 patients with narcolepsy who had the exceptional ability to lucid dream in REM sleep, a condition in which one is conscious of dreaming during the dream and can signal lucidity with an ocular code. Sleep and respiration were monitored during multiple naps. Participants were instructed to modify their dream scenario so that it involved vocalizations or an apnoea, -two behaviours that require a cortical control of ventilation when executed during wakefulness. Most participants (86%) were able to signal lucidity in at least one nap. In 50% of the lucid naps, we found a clear congruence between the dream report (e.g., diving under water) and the observed respiratory behaviour (e.g., central apnoea) and, in several cases, a preparatory breath before the respiratory behaviour. This suggests that the cortico-subcortical networks involved in voluntary respiratory movements are preserved during REM sleep and that breathing irregularities during this stage have a cortical/subcortical origin that reflects dream content.

Highlights

  • Breathing is irregular during rapid eye-movement (REM) sleep, whereas it is stable during non-REM sleep

  • Contrasting with what occurs during wakefulness, breathing becomes more and more regular while we dive into deeper stages of non-rapid eye movement (NREM) sleep[9]

  • In the hypothesis of a congruence between respiratory behaviours during REM sleep and corresponding respiratory mental content, the descending inhibitory inputs should manifest as central apnoeas during sleep and respiration monitoring, and the excitatory inputs as changes in the characteristics of the breath immediately preceding such apnoeas

Read more

Summary

Introduction

Breathing is irregular during rapid eye-movement (REM) sleep, whereas it is stable during non-REM sleep. In 50% of the lucid naps, we found a clear congruence between the dream report (e.g., diving under water) and the observed respiratory behaviour (e.g., central apnoea) and, in several cases, a preparatory breath before the respiratory behaviour This suggests that the cortico-subcortical networks involved in voluntary respiratory movements are preserved during REM sleep and that breathing irregularities during this stage have a cortical/subcortical origin that reflects dream content. Pontine-dependent processes could cause the co-activation of the multiple phasic events that occur during REM sleep In support of this idea, discharge rates of medullary neurons, whose activity is highly specific to REM sleep, correlate with eye movement bursts and erratic breathing[17].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.