Abstract

Rapid eye movement (REM) sleep deprivation has previously been shown to interfere with normal learning and memory and to inhibit long-term potentiation (LTP) in vitro. Previous studies on REM sleep deprivation and LTP have relied on in vitro analysis in isolated brain slices taken from animals following several days of sleep deprivation. LTP in the hippocampus in situ may differ from LTP in vitro due to modulatory inputs from other brain regions, which are altered after REM sleep deprivation. Here, we examined LTP in unanesthetized, behaving animals on the first and second recovery days following REM sleep deprivation to determine if similar effects are seen in vivo as previously reported in vitro. We found that LTP was significantly impaired in REM sleep-deprived animals on the second recovery day but not the first recovery day. Our results extend previous findings by showing that REM sleep deprivation continues to affect hippocampal function for more than 24 h following the end of deprivation. Our results also suggest the presence of a modulatory process not present in vitro. Our findings are not explained by stress during REM sleep deprivation because equivalent circulating corticosterone levels (an index of stress) were found during both REM sleep deprivation and control treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call