Abstract
The size of the readily releasable pool (RRP) of vesicles is critically important for determining the size of postsynaptic currents generated in response to action potentials. However, discrepancies in RRP estimates exist among methods designed to measure RRP size. In glutamatergic hippocampal neurons, we found that hypertonic sucrose application yielded RRP size estimates approximately fivefold larger than values obtained with high-frequency action potential trains commonly assumed to deplete the RRP. This discrepancy was specific for glutamatergic neurons, because no difference was found between sucrose and train estimates of RRP size in GABAergic neurons. A small component of the difference in excitatory neurons was accounted for by postsynaptic receptor saturation. Train estimates of vesicle pool size obtained using more stimuli revealed that action potential-elicited EPSCs did not truly reach a steady state during shorter trains, and RRP estimates were closer to sucrose estimates made in the same neurons. This suggested that reluctant vesicles may contribute to the total available pool. Two additional lines of evidence supported this hypothesis. First, RRP estimates from strongly depolarizing hyperkalemic solutions closely matched those obtained with sucrose. Second, when Ca2+ influx was enhanced during trains, train estimates of pool size matched those obtained with sucrose. These data suggest that glutamatergic hippocampal neurons maintain a heterogeneous population of vesicles that can be differentially released with varying Ca2+ influx, thereby increasing the range of potential synaptic responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.