Abstract

This paper designs a relocation scheduler for electric vehicle sharing systems, aiming at overcoming stock imbalance and enhancing service ratio by evenly distributing relocation load for multiple service teams. To exploit genetic algorithms, a feasible schedule is encoded to an integer-valued vector having k+m-1 elements, where k is the number of vehicles to move and m is the number of service teams. Two indices are built for overflow and underflow stations, making each vector element denote a source and a destination by its position and the value itself. In addition, negative numbers are inserted to separate the subschedules for each team. The maximum of relocation distances is calculated in the cost function while the genetic iterations reduce the cost generation by generation. The performance measurement result, obtained by a prototype implementation, finds out that each addition of a service team reduces the relocation distance to 47.3 %, 32.0 %, and 25.0 %, making it possible to tune the system performance according to the permissible budget and available human resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.