Abstract
Drug-induced liver injury describes the adverse effects of drugs that damage the liver. Life-threatening results were also reported in severe cases. Therefore, liver toxicity is an important assessment for new drug candidates. These reports are documented in research papers that contain preliminary in vitro and in vivo experiments. Conventionally, data extraction from publications relies on resource-demanding manual labeling, which restricts the efficiency of the information extraction. The development of natural language processing techniques enables the automatic processing of biomedical texts. Herein, based on around 28,000 papers (titles and abstracts) provided by the Critical Assessment of Massive Data Analysis challenge, this study benchmarked model performances on filtering liver-damage-related literature. Among five text embedding techniques, the model using term frequency-inverse document frequency (TF-IDF) and logistic regression outperformed others with an accuracy of 0.957 on the validation set. Furthermore, an ensemble model with similar overall performances was developed with a logistic regression model on the predicted probability given by separate models with different vectorization techniques. The ensemble model achieved a high accuracy of 0.954 and an F1 score of 0.955 in the hold-out validation data in the challenge. Moreover, important words in positive/negative predictions were identified via model interpretation. The prediction reliability was quantified with conformal prediction, which provides users with a control over the prediction uncertainty. Overall, the ensemble model and TF-IDF model reached satisfactory classification results, which can be used by researchers to rapidly filter literature that describes events related to liver injury induced by medications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.