Abstract

Reliable gene expression control in mammalian cells requires tools with high fold change, low noise, and determined input-to-output transfer functions, regardless of the method used. Toward this goal, optogenetic gene expression systems have gained much attention over the past decade for spatiotemporal control of protein levels in mammalian cells. However, most existing circuits controlling light-induced gene expression vary in architecture, are expressed from plasmids, and utilize variable optogenetic equipment, creating a need to explore characterization and standardization of optogenetic components in stable cell lines. Here, the study provides an experimental pipeline of reliable gene circuit construction, integration, and characterization for controlling light-inducible gene expression in mammalian cells, using a negative feedback optogenetic circuit as a case example. The protocols also illustrate how standardizing optogenetic equipment and light regimes can reliably reveal gene circuit features such as gene expression noise and protein expression magnitude. Lastly, this paper may be of use for laboratories unfamiliar with optogenetics who wish to adopt such technology. The pipeline described here should apply for other optogenetic circuits in mammalian cells, allowing for more reliable, detailed characterization and control of gene expression at the transcriptional, proteomic, and ultimately phenotypic level in mammalian cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.