Abstract

Local distributed algorithms can only gather sufficient information to identify local graph traits, that is, properties that hold within the local neighborhood of each node. However, it is frequently the case that global graph properties (connectivity, diameter, girth, etc) have a large influence on the execution of a distributed algorithm.This paper studies local graph traits and their relationship with global graph properties. Specifically, we focus on graph k-connectivity. First we prove a negative result that shows there does not exist a local graph trait which perfectly captures graph k-connectivity. We then present three different local graph traits which can be used to reliably predict the k-connectivity of a graph with varying degrees of accuracy.As a simple application of these results, we present upper and lower bounds for a local distributed algorithm which determines if a graph is k-connected. As a more elaborate application of local graph traits, we describe, and prove the correctness of, a local distributed algorithm that preserves k-connectivity in mobile ad hoc networks while allowing nodes to move independently whenever possible.KeywordsMinimum Span TreeGraph PropertyUnit Disk GraphPower AssignmentCommunication RoundThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.