Abstract

A long-standing vision of backscatter communications is to provide long-range connectivity and high-speed transmissions for batteryless Internet-of-Things (IoT). Recent years have seen major innovations in designing backscatters toward this goal. Yet, they either operate at a very short range, or experience extremely low throughput. This paper takes one step further toward breaking this stalemate, by presenting PolarScatter that exploits channel polarization in long-range backscatter links. We transform backscatter channels into nearly noiseless virtual channels through channel polarization, and convey bits with extremely low error probability. Specifically, we propose a new polar code scheme that automatically adapts itself to different channel quality, and design a low-cost encoder to accommodate polar codes on resource-constrained backscatter tags. We build a prototype PCB tag and test it in various outdoor and indoor environments. Our experiments show that our prototype achieves up to 10× throughput gain, or extends the range limit by 1.8× compared with the state-of-the-art long-range backscatter solution. We also simulate an IC design in TSMC 65 nm LP CMOS process. Compared with traditional encoders, our encoder reduces storage overhead by three orders of magnitude, and lowers the power consumption to tens of microwatts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.