Abstract

In distributed computer systems, processors often need to be synchronized to maintain correctness and consistency. Unlike shared-memory parallel systems, the lack of shared memory and a clock considerably complicates the task of synchronization in distributed systems. The objective of this article is two-fold: (1) We present a new randomized agreement algorithm to synchronize cooperating processors in a distributed system. This algorithm achieves the desired agreement in expected five rounds of message exchanges, tolerating a maximum of one-fifth of the processors failures. The algorithm belongs to the class of broadcast-based synchronization problems. (2) We present a new self-stabilization algorithm for an acyclic directed-graph structured distributed systems. This new fault-tolerant algorithm survives all imaginable faults in distributed systems. The algorithm belongs to arbiter-based and broadcast-based synchronization problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call