Abstract

This study addresses the stability and stabilizability problems for complex-valued memristive neural networks (CVMNNs) with actuator failures via reliable aperiodic event-triggered sampled-data control. Different from the traditional control methods with time-triggered mechanism, an aperiodic event-triggered sampled-data control scheme is first proposed for CVMNNs. Taking the influence of actuator failures into account, a reliable controller is designed. In comparison with the existing control approaches, the one here is not only more applicable but effective to save the communication resources for CVMNNs. Then, a new Lyapunov–Krasovskii functional (LKF) is introduced, which can fully capture the information of sampling and complex-valued activation functions. Based on the LKF and some new estimation techniques, novel stability and stabilizability criteria are established, and the desired reliable aperiodic event-triggered sampled-data controller gains are obtained simultaneously. Finally, numerical simulations are provided to verify the effectiveness of the obtained theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call