Abstract

This study investigates the time-dependent reliable shortest path problem (TD-RSPP), which is commonly encountered in congested urban road networks. Two variants of TD-RSPP are considered in this study. The first variant is to determine the earliest arrival time and associated reliable shortest path for a given departure time, referred to as the “forward” TD-RSPP. The second problem is to determine the latest departure time and associated reliable shortest path for a given preferred arrival time, referred as the “backward” TD-RSPP. It is shown in this article that TD-RSPP is not reversible. The backward TD-RSPP cannot be solved by the algorithms designed for the forward problem using the reverse search from destination to origin. In this study, two efficient solution algorithms are proposed to solve the forward and backward TD-RSPP exactly and the optimality of proposed algorithms is rigorously proved. The proposed solution algorithms have potential applications in both advanced traveler information systems and stochastic dynamic traffic assignment models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.