Abstract
Behavior-related neuronal signals often vary between neurons, which might reflect the unreliability of individual neurons or a truly heterogeneous code. This notion may also apply to economic ("value-based") choices and the underlying reward signals. Reward value is subjective and can be described by a nonlinearly weighted magnitude (utility) and probability. Defining subjective values relies on the continuity axiom, whose testing involves structured variations of a wide range of reward magnitudes and probabilities. Axiom compliance demonstrates understanding of the stimuli and the meaningful character of choices. Using these tests, we investigated the encoding of subjective economic value by neurons in a key economic-decision structure of the monkey brain, the orbitofrontal cortex (OFC). We found that individual neurons carry heterogeneous neuronal value signals that largely fail to match the animal's choices. However, neuronal population signals matched the animal's choices well, suggesting accurate subjective economic value encoding by a heterogeneous population of unreliable neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.