Abstract

In flexible neuromorphic systems for realizing artificial intelligence, organic memristors are essential building blocks as artificial synapses to perform information processing and memory. Despite much effort to implement artificial neural networks (ANNs) using organic memristors, the reliability of these devices is inherently hampered by global ion transportation and arbitrary growth of conductive filaments (CFs). As a result, the performance of ANNs is restricted. Herein, a novel concept for confining CF growth in organic memristors is demonstrated by exploiting the unique functionality of crosslinkable polymers. This can be achieved by predefining the localized ion-migration path (LIP) in crosslinkable polymers. In the proposed organic memristor, metal cations are locally transported along the LIP. Thus, CF growth is achieved only in a confined region. A flexible memristor with an LIP exhibits a vastly improved reliability and uniformity, and it is capable of operating with high mechanical and electrical endurance. Moreover, neuromorphic arrays based on the proposed memristor exhibit 96.3% learning accuracy, which is comparable to the ideal software baseline. The proposed concept of predefining the LIP in organic memristors is expected to provide novel platforms for the advance of flexible electronics and to realize a variety of practical neural networks for artificial intelligence applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.