Abstract

Laser-based metrology has been identified as an enabling technology in the deployment of large, spaceborne observatories, where nanometer-level knowledge of fiducial displacement drives overall system performance. In particular, Nd:YAG NPRO (non-planar ring oscillator) based lasers have received considerable attention in this application because of their inherent high coherence at wavelengths of interest (1064 and 1319nm). However, the use of NPRO based lasers in decade long space missions is limited by typical 800nm-band pump laser diode wearout and random failure rates. Therefore, reliably achieving multi-hundred milliwatt NPRO power over prolonged mission lifetimes requires innovative pump architectures. In this paper we present a pump architecture capable of supporting continuous NPRO operation over 5.5yrs at 300mW with reliability exceeding 99.7%. The proposed architecture relies on a low-loss, high port count, all-fiber optical coupler to combine the outputs of multiple single-mode pump laser diodes. This coupler is capable of meeting the exacting environmental requirements placed by a space mission, such as SIM Lite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call