Abstract

This paper is concerned with the problem of designing reliable linear-quadratic state-feedback control for continuous-time linear time-invariant singular systems. A procedure for designing reliable state-feedback control is presented in the case of possible actuator faults in pre-specified set of actuators. The proposed state-feedback controller is able to guarantee the stability (admissibility) and linear-quadratic performances bound of closed-loop systems. In addition, in the worst fault case, the performance of closed-loop systems is optimized by the proposed controller. Simulation results on a test example show that the proposed approach is valid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call