Abstract
In this paper, five reliable iterative methods: Daftardar-Jafari method (DJM), Tamimi-Ansari method (TAM), Banach contraction method (BCM), Adomian decomposition method (ADM) and Variational iteration method (VIM) to obtain approximate solutions for a mathematical model that represented the coronavirus pandemic (COVID -19 pandemic). The accuracy of the obtained results is numerically verified by evaluating the maximum error remainder. In addition, the approximate results are compared with the fourth-order Runge-Kutta method (RK4) and good agreement have achieved. The convergence of the proposed methods is successfully demonstrated and mathematically verified. All calculations were successfully performed with MATHEMATICA®10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Mathematical Biology and Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.