Abstract

BackgroundThe genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.ResultsIn this study, the accurate identification of Brucella species using MALDI-TOF-MS was achieved by constructing a Brucella reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from Brucella species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for Brucella species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and B. suis biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for Brucella, even minimal genomic differences between these serovars translate to specific proteomic differences.ConclusionsMALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.

Highlights

  • The genus Brucella contains highly infectious species that are classified as biological threat agents

  • Strain W99 matched as closely to a B. abortus as to a B. melitensis in the database, indicating the close relationship between the two species. This isolate is known in the literature as B. abortus W99, an A-epitope dominant strain used in a study in which the smooth lipopolysaccharides have been characterized [34]

  • This W99 strain differs at seven different loci from known B. melitensis and B. abortus isolates and is most likely an outlier

Read more

Summary

Introduction

The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response to biological warfare attacks and to natural outbreaks. Matrix-assisted laser desorption/ionization time-offlight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. The genus Brucella contains highly infectious species that have been found to cause infections in a wide variety of mammals. Brucella species have a low infectious dose and are capable of transmission via aerosols, and the treatment of infections is lengthy with a risk of complications.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.