Abstract

This paper is concerned with the reliable filtering problem for discrete-time piecewise linear systems subject to sensor failures and time delays. The considered sensor failures are depicted by bounded variables taking value on a certain interval. The time delays are assumed to be infinitely distributed in the discrete-time domain. The purpose of the addressed reliable filtering problem is to design a piecewise linear filter such that, for the admissible sensor failures and possible infinite distributed delays, the augmented dynamics is exponentially stable and the performance is guaranteed with a prescribed attenuation level . With the aid of the convex optimal method, the filter parameters are obtained in terms of the solution to a set of LMIs which can be solved by the Matlab Toolbox. At last, an illustrative simulation is presented to demonstrate the effectiveness and applicability of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.