Abstract

Noise-adding methods have been widely used to manipulate the direction of quantum steering, but all related experimental schemes only worked under the assumption that Gaussian measurements were performed and ideal target states were accurately prepared. Here, we prove, and then experimentally observe, that a class of two-qubit states can be flexibly changed among two-way steerable, one-way steerable and no-way steerable, by adding either phase damping noise or depolarization noise. The steering direction is determined by measuring steering radius and critical radius, each of which represents a necessary and sufficient steering criterion valid for general projective measurements and actually prepared states. Our work provides a more efficient and rigorous way to manipulate the direction of quantum steering, and can also be employed to manipulate other types of quantum correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.