Abstract

With the rapid development of mobile devices and the crowdsourcing platforms, the spatial crowdsourcing has attracted much attention from the database community, specifically, spatial crowdsourcing refers to sending a location-based request to workers according to their positions. In this paper, we consider an important spatial crowdsourcing problem, namely reliable diversity-based spatial crowdsourcing (RDB-SC), in which spatial tasks (such as taking videos/photos of a landmark or firework shows, and checking whether or not parking spaces are available) are time-constrained, and workers are moving towards some directions. Our RDB-SC problem is to assign workers to spatial tasks such that the completion reliability and the spatial/temporal diversities of spatial tasks are maximized. We prove that the RDB-SC problem is NP-hard and intractable. Thus, we propose three effective approximation approaches, including greedy, sampling, and divide-and-conquer algorithms. In order to improve the efficiency, we also design an effective cost-model-based index, which can dynamically maintain moving workers and spatial tasks with low cost, and efficiently facilitate the retrieval of RDB-SC answers. Through extensive experiments, we demonstrate the efficiency and effectiveness of our proposed approaches over both real and synthetic datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.