Abstract

A network model of disparity estimation was developed based on disparity-selective neurons, such as those found in the early stages of processing in the visual cortex. The model accurately estimated multiple disparities in regions, which may be caused by transparency or occlusion. The selective integration of reliable local estimates enabled the network to generate accurate disparity estimates on normal and transparent random-dot stereograms. The model was consistent with human psychophysical results on the effects of spatial-frequency filtering on disparity sensitivity. The responses of neurons in macaque area V2 to random-dot stereograms are consistent with the prediction of the model that a subset of neurons responsible for disparity selection should be sensitive to disparity gradients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.