Abstract
Extracellular vesicle PD-L1 (programmed death-1 ligand 1) is of greater value in tumor diagnosis, prognosis, and efficacy monitoring of anti-PD-1/PD-L1 immunotherapy. However, soluble PD-L1 interferes with the accurate detection of extracellular vesicle (EV) PD-L1. Here, we developed a microfluidic differentiation method for the detection of extracellular PD-L1, without the interference of soluble, by DNA computation with lipid probes and PD-L1 aptamer as inputs (DECLA). For the developed DECLA method, a cholesterol-DNA probe was designed that efficiently embeds into the EV membrane, and an aptamer-based PD-L1 probe was used for PD-L1 recognition. Due to the stable secondary structure of the designed connector, only cobinding of cholesterol-DNA and PD-L1 affinity probe induced biotin-labeled connector activation, while soluble PD-L1 cannot hybridize. As a result, PD-L1 EVs can be efficiently captured by streptavidin-functioned herringbone chip and quantified by anti-CD63-induced fluorescence signal. The high specificity of dual-input DNA computation allied to the high sensitivity of microfluidic-based detection was suitable for distinguishing lung cancer patients from healthy donors, highlighting its potential translation to clinical diagnosis and therapy monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.