Abstract

In an IoT environment, which is characterized by a multitude of interconnected smart devices with sensing and computational capabilities, many applications are (i) content-based, that is, they are only interested in finding a given type of content rather than the location of data, and (ii) contextualized, that is, the content is generated and consumed in the proximity of the user. In this context, the Information-Centric Networking (ICN) paradigm is an appealing model for efficiently retrieving application data, and the service decentralization towards the network edge helps to reduce the core network load being the data produced by IoT devices mainly confined in the area where they are generated. MobCCN is an ICN-based data delivery protocol that we designed for operating efficiently in such context (Borgia et al., 2016, 2018), where static and mobile IoT devices are enriched with ICN functions. Specifically, MobCCN leverages an efficient routing and forwarding protocol, exploiting opportunistic contacts among IoT mobile devices, to fill the Forwarding Interest Base (FIB) tables so as to correctly forward Interest packets towards the intended data producers. In this paper, we aim to enhance the reliability of MobCCN by exploring different retransmissions mechanisms, such as retransmissions based on number of duplicate Interests that are received for the same requested content, periodic retransmissions, single path versus disjoint multi-path forwarding, hysteresis mechanism and combinations of them. Extensive simulation results show that, among the analysed MobCCN variants, the one that implements both periodic retransmissions and a hysteresis-based retransmission process ensures the highest delivery rates (up to 95%) and the shortest network path, with a very limited traffic overhead due to retransmissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call