Abstract
Fed-batch cultures are the preferred operation mode for industrial bioprocesses requiring high cellular densities. Avoids accumulation of major fermentation by-products due to metabolic overflow, increasing process productivity. Reproducible operation at high cell densities is challenging (>100 gDCW/L), which has precluded rigorous model evaluation. Here, we evaluated three phenomenological models and proposed a novel hybrid model including a neural network. For this task, we generated highly reproducible fed-batch datasets of a recombinant yeast growing under oxidative, oxygen-limited, and respiro-fermentative metabolic regimes. The models were reliably calibrated using a systematic workflow based on pre-and post-regression diagnostics. Compared to the best-performing phenomenological model, the hybrid model substantially improved performance by 3.6- and 1.7-fold in the training and test data, respectively. This study illustrates how hybrid modeling approaches can advance our description of complex bioprocesses that could support more efficient operation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.