Abstract
Chaos is a deterministic phenomenon that occurs in a non-linear dynamic system under specific condition when the trajectories of the state vector become periodic and extremely sensitive to the initial conditions. While traditional resistor-based chaotic communications are primarily concerned with the safe transfer of information across networks, the transceivers themselves can be compromised due to outsource manufacturing. With the growth of wireless sensors in resource-constrained implantable and wearable devices, chaotic communication may be a good fit if the information transmitted is reliable and the transmitter devices are secure. We believe that memristor, as the fourth fundamental two-terminal circuit element, can close the gap between reliable communication and secure manufacturing since its resistance can be programmed and saved by the designer and not the foundry. Thus, in this paper, we propose a memristor-based Chua’s chaotic transceiver that is both reliable in the presence of eavesdroppers and secure against untrusted foundries. Specifically, we consider the pair of transmitter and receiver under the same memristor value to show the possibility of uninterrupted communication as well as cases where different values of memristors are used to find out the possible range in which the message can still be meaningfully decoded. Experimental results confirm that both reliable communication and secure design can be achieved via our proposed memristor-based chaos transceivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.