Abstract
Truth discovery has received considerable attention in mobile crowdsensing systems. In real practice, it is vital to resolve conflicts among a large amount of sensory data and estimate the truthful information. Although truth discovery has been widely explored to improve aggregation accuracy, numerous security and privacy issues still need to be addressed. Existing schemes either do not guarantee the privacy of each participating user, or fail to consider practical needs in crowdsensing systems. In this paper, we present two reliable and privacy-preserving truth discovery schemes for different scenarios. Our first design is fit for applications where users are relatively stable. By employing the homomorphic Paillier encryption, one-way hash chain, and super-increasing sequence techniques, this approach not only guarantees strong privacy, but also is highly efficient and practical. Our second design suits applications where users are frequently moving. In such an application, we explore data perturbation and homomorphic Paillier encryption to shift all user workloads to the server side, without compromising users’ privacy. Through detailed security analysis, we demonstrate that both schemes are secure, practical, and privacy-preserving. Moreover, extensive experiments based on real world and simulated mobile crowdsensing systems, we demonstrate the efficiency of our proposed schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dependable and Secure Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.