Abstract

Manufacturing tolerances and other uncertainties may play an important role in the performance of parallel manipulators since they can affect the distance to a singular configuration. Motion planning strategies for parallel manipulators under uncertainty require decision making approaches for classifying reliable regions within the workspace. In this paper, we address fail free and reliable motion planning for parallel manipulators. Failure is related to parallel kinematic singularities in the motion equations or to ill-conditioning of the Jacobian matrices. Monte Carlo algorithm is employed to compute failure probabilities for a dense grid of manipulator workspace configurations. The inverse condition number of the Jacobian matrix is used to compute the distance between each configuration and a singularity. For supporting motion planning strategies, not only failure maps are constructed but also reliable and failure-free workspaces are obtained. On the one hand, the reliable workspace is obtained by minimizing the failure probabilities subject to a minimal workspace area. Differently, a failure-free workspace is found by maximizing the workspace area subject to a probability of failure equal to zero. A 3RRR manipulator is used as a case study. For this case study, the usage of the reliable strategy can be useful for robustifying motion planning algorithm without a significant reduction of the reliable regions within the workspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.