Abstract
This research examines the probabilistic safety assessment of the historic BISTOON arch bridge. Probabilistic analysis based on the Load-Resistance model was performed. The evaluation of implicit functions of load and resistance was performed by the finite element method, and the Monte-Carlo approach was used for experiment simulation. The sampling method used was Latin Hypercube. Four random variables were considered including modulus of elasticity of brick and infilled materials and the specific mass of brick and infilled materials. The normal distribution was used to express the statistical properties of the random variables. The coefficient of variation was defined as 10%. Linear behavior was assumed for the bridge materials. Three output parameters of maximum bridge displacement, maximum tensile stress, and minimum compressive stress were assigned as structural limit states. A sensitivity analysis for probabilistic analysis was performed using the Spearman ranking method. The results showed that the sensitivity of output parameters to infilled density changes is high. The results also indicated that the system probability of failure is equal to <i>p f system</i> =1.55 × 10<sup>−3</sup>. The bridge safety index value obtained is <i>β</i><i>t</i> = 2.96, which is lower than the recommended target safety index. The required safety parameters for the bridge have not been met and the bridge is at the risk of failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.