Abstract
ABSTRACTIn this study, the design optimization of the gap size of annular nuclear fuels used in pressurized water reactors (PWRs) was performed. For this, thermoelastic–plasticity–creep (TEPC) analysis of PWR annular fuels was carried out using an in-house code to investigate the performance of nuclear fuels. Surrogate models based on the kriging and inverse distance weighting models were generated using computational performance data based on optimal Latin hypercube design. Using these surrogate models, the gap size of PWR annular fuel was deterministically optimized using the micro-genetic algorithm to improve the heat transfer efficiency and maintain a lower level of stress. Reliability-based design optimization and reliability-based robust design optimization were conducted to satisfy target reliability and secure the robustness of the PWRs’ performance. The optimal gap size was validated through TEPC analysis and the optimum solutions were compared according to the approximate method and reliability index.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.