Abstract

Optimal performance of vehicle occupant restraint system (ORS) requires an accurate assessment of occupant injury values including head, neck and chest responses, etc. To provide a feasible framework for incorporating occupant injury characteristics into the ORS design schemes, this paper presents a reliability-based robust approach for the development of the ORS. The uncertainties of design variables are addressed and the general formulations of reliable and robust design are given in the optimization process. The ORS optimization is a highly nonlinear and large scale problem. In order to save the computational cost, an optimal sampling strategy is applied to generate sample points at the stage of design of experiment (DOE). Further, to efficiently obtain a robust approximation, the support vector regression (SVR) is suggested to construct the surrogate model in the vehicle ORS design process. The multiobjective particle swarm optimization (MPSO) algorithm is used for obtaining the Pareto optimal set with emphasis on resolving conflicting requirements from some of the objectives and the Monte Carlo simulation (MCS) method is applied to perform the reliability and robustness analysis. The differences of three different Pareto fronts of the deterministic, reliable and robust multiobjective optimization designs are compared and analyzed in this study. Finally, the reliability-based robust optimization result is verified by using sled system test. The result shows that the proposed reliability-based robust optimization design is efficient in solving ORS design optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.