Abstract

Reliability-based design optimization (RBDO) is a topic of interest for research in both academia and industry. RBDO typically involves adjusting the mean values of the design variables while fixing the spread parameters, often measured as variance, in order to accomplish a given objective within the stated constraints. This paper proposes an alternate way to meet given design criteria by fixing the mean values of the statistical inputs and allowing the spread parameters to become design variables. To do this, product cost models are proposed in terms of statistical variables. By performing this type of optimization, the design changes are kept to a minimum, and the focus is instead shifted to variance control. An initial study is performed on a three-bar truss subject to static loading with material variability. A more complex example is performed involving the cost minimization of an unmanned undersea vehicle subjected to hydrostatic buckling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.