Abstract
The objective of this study is to develop an accurate surrogate modeling method for construction of the surrogate model to represent the performance measures of the compute-intensive simulation model in reliability-based design optimization (RBDO). In addition, an assessment method for the confidence level of the surrogate model and a conservative surrogate model to account the uncertainty of the prediction on the untested design domain when the number of samples are limited, are developed and integrated into the RBDO process to ensure the confidence of satisfying the probabilistic constraints at the optimal design. The effort involves: (1) developing a new surrogate modeling method that can outperform the existing surrogate modeling methods in terms of accuracy for reliability analysis in RBDO; (2) developing a sampling method that efficiently and effectively inserts samples into the design domain for accurate surrogate modeling; (3) generating a surrogate model to approximate the probabilistic constraint and the sensitivity of the probabilistic constraint with respect to the design variables in mostprobable-point-based RBDO; (4) using the sampling method with the surrogate model to approximate the performance function in sampling-based RBDO; (5) generating a conservative surrogate model to conservatively approximate the performance function in sampling-based RBDO and assure the obtained optimum satisfy the probabilistic constraints. In applying RBDO to a large-scale complex engineering application, the surrogate model is commonly used to represent the compute-intensive simulation model of the performance function. However, the accuracy of the surrogate model is still challenging for highly nonlinear and large dimension applications. In this work, a new method, the
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.