Abstract

A wide variety of models have been proposed for estimating the reliability of highway bridges. For reinforced concrete bridges subjected to environmental attack, time-variant reliability methods have to be used. In this study, the condition of reinforced concrete girder bridges is assessed using a time-variant system reliability approach in which both load and resistance are time-variant quantities. Several system models are considered, including failure of any girder (series system) and failure of a specified number of adjacent girders (series-parallel system). Adaptive importance sampling is used to determine the cumulative-time system failure probability. An existing reinforced concrete T-beam bridge located near Pueblo, Colorado, is investigated. The influence of resistance degradation and post-failure load redistribution is included. A comparison of reliability estimates for several system models is given, including the influence of correlation among initial girder strengths. The results can be used as a guide for the selection of system models for bridge reliability analysis, identification of critical girders in a bridge system, and for the development of optimal reliability-based maintenance strategies for reinforced concrete highway bridges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call