Abstract
This work studies reliability after dc and ac hot-carrier stress of polysilicon thin-film transistors (poly-Si TFTs) with single-channel and ten-nanowire channels, respectively. For single-channel (S1) poly-Si TFT, the device characteristics degradation under ac hot-carrier stress is severer than dc stress. In addition, the Vth and SS variation increases with the frequency increasing from 1 K Hz to 1 MHz. On the contrary, for tennanowire channels (M10) tri-gate poly-Si TFT, the Vth and SS variation is much lower than the S1 TFT with different stressing frequency. These results indicate that the M10 TFT has less deep state generation after dc and ac stress. Because the M10 TFT has more effective NH3 plasma passivation than that of S1 TFT due to the ten split nanowire channels has wide NH3 plasma passivation area. Moreover, M10 TFT has robust tri-gate control can reduce the lateral electrical field and its penetration from the drain to reduce hot-carrier effect. In ac stress study, the device degradation is dependent on the pulse falling time rather than rising time. In temperature study, the device degradation is improved as the operation temperature increasing from 25°C to 75°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.