Abstract
The objective of this study was to examine the reliability of existing and improved Stirling engine concepts for dispersed solar dish-electric applications in the 25-50 kWe range. Five current kinematic Stirling engine designs have the capability to meet or exceed the 32% efficiency goal of the DOE Solar Thermal Program. A review of historical Stirling engine data illustrated that the three major reliability issues with kinematic Stirling engines are the piston-rod seals, engine hot parts (i.e., heater head, regenerator and cylinders) and power control/drive system. The most significant reliability issue associated with achieving the 50,000 hour operating life goal involves piston-rod seals. A specific kinematic engine concept that appears to have the potential for meeting the 50,000 hour operating lifetime requirement of solar power systems is the STM4-120 engine. This engine has a pressurized crankcase to reduce piston-rod seal problems, an indirect heat pipe hot-end section to smooth out temperature gradients in the heater tubes, and a variable angle swashplate for power control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.