Abstract

Reliability prediction plays an important role in product lifecycle management. It has been used to assess various reliability indices (such as reliability, availability and mean time to failure) before a new product is physically built and/or put into use. In this article, a novel approach is proposed to facilitate reliability prediction for evolutionary products during their early design stages. Due to the lack of sufficient data in the conceptual design phase, reliability prediction is not a straightforward task. Taking account of the information from existing similar products and knowledge from domain experts, a neural network-based fuzzy synthetic assessment (FSA) approach is proposed to predict the reliability indices that a new evolutionary product could achieve. The proposed approach takes advantage of the capability of the back-propagation neural network in terms of constructing highly non-linear functional relationship and combines both the data sets from existing similar products and subjective knowledge from domain experts. It is able to reach a more accurate prediction than the conventional FSA method reported in the literature. The effectiveness and advantages of the proposed method are demonstrated via a case study of the fuel injection pump and a comparative study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.