Abstract

IntroductionLong-term contamination of tap water and groundwater by perfluoroalkyl and polyfluoroalkyl substances (PFASs) has been documented in the Veneto region of northern Italy. This study aimed to assess the exposure of individuals residing in the contaminated area and to test several toxicokinetic (TK) models of varying complexities to identify an efficient method for predicting perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in human serum using observed data.The ultimate goal is to provide public health officials with guidance on selecting the appropriate TK model for specific contexts, a reliable and rapid tool to support human bio-monitoring (HBM) studies. MethodsTwo simpler empirical TK models and a more complex multi-compartment physiologically based toxicokinetic (PBTK) model were compared with individual and aggregate data from an HBM study. In addition, the PBPK model was modified by adjusting input parameters and introducing new terms into the equations within the original model code. These modifications aimed to optimize the results compared to the original model, with some versions incorporating adjustments to account for the influence of menstruation in women. All models were evaluated to understand their strengths and weaknesses, providing guidance on the appropriate model to use according to specific scenarios. ResultsThe results obtained from the tested models were quite similar, with significant improvements observed only in the modified models. Simpler models also provided satisfactory results in scenarios involving low PFOS serum concentrations and recent exposure cessation. In many cases, predictions demonstrated high accuracy, particularly at the aggregate level and for women. ConclusionsThese findings suggest that environmental protection agencies and health authorities may benefit from employing the tested models at the aggregate level as an initial step in HBM studies, rather than conducting more invasive and expensive screening campaigns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.