Abstract

Two types of three-electrode gas-insulated spark gaps have been investigated in this paper: one with the third electrode located inside the main electrode, and the other with a separate third electrode. Three types of insulating media have been used: vacuum, SF6 and N2. Additionally, three different electrode materials have been implemented: copper, steel and tungsten. The following characteristics have been tested experimentally: the influence of insulating gas parameters on spark gap operation, the influence of the polarity of working and trigger voltages on spark gap operation, and the influence of the rate of rise of the trigger voltage on spark gap operation and the degree of spark gap irreversibility. A theoretical model of the spark gap is presented in the paper, which provides a basis for explaining experimental results depending on specific characteristics of the spark gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.