Abstract

To assess the reliability of diffusion tensor imaging (DTI)-based fibre tractography (FT), which is a prerequisite for clinical applications of this technique. Here we assess the test-retest reproducibility of the architectural and microstructural features of two clinically relevant tracts reconstructed with DTI-FT. The corticospinal tract (CST), arcuate fasciculus (AF) and its long segment (AFl) were reconstructed in 17 healthy subjects imaged twice using a deterministic approach. Coefficients of variation (CVs) of diffusion-derived tract values were used to assess the microstructural reproducibility. Spatial correlation and fibre overlap were used to assess the architectural reproducibility. Spatial correlation was 68 % for the CST and AF, and 69 % for the AFl. Overlap was 69 % for the CST, 61 % for the AF, and 59 % for the AFl. This was comparable to 2-mm tract shift variability. CVs of diffusion-derived tract values were at most 3.4 %. The results showed low architectural and microstructural variability for the reconstruction of the tracts. The architectural reproducibility results encourage the further investigation of the use of DTI-FT for neurosurgical planning. The high microstructural reproducibility results are promising for using DTI-FT in neurology to assess or predict functional recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.