Abstract

Abstract In this paper, the solder joint failure and the solder joint fatigue life in the Thin-profile Fine-pitch Ball Grid Array (TFBGA) Package was investigated by performing the drop test, and implementing a simulation model. Owing to the need to meet the increasing demands for functionality, microelectronic package reliability can be compromised and has become the key issue when executing drop tests. During impact in drop test, the deformation of PCB due to bending and mechanical shocks can cause solder joint crack. While this is a well-known issue, observing the solder joint responses during the test execution can be a challenge. Therefore, in this work, a simulation model approach has been developed to investigate the stress and strain of the solder joint during the drop test. In this research, the JEDEC Condition B drop test was simulated, characterized by 1500G peak acceleration and 0.5 ms duration. The drop test simulation model was successful in predicting the solder joint fatigue life with different solder joint materials, such as SAC105 and SAC1205N, while also facilitating result comparison to identify the most optimal structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.