Abstract

PurposeTo determine if post-exercise heart rate variability, in the form of logged transformed root mean square of successive differences of the R–R intervals (LnRMSSD) can be measured reliably during the recovery from a submaximal cycle test and what the relationship of LnRMSSD is with training status of the cyclists.MethodsFourteen male cyclists participated in the reliability part for the study, which included performing six Lamberts Submaximal Cycle Test (LSCT), during which recovery LnRMSSD was measured over 30 s (LnRMSSD30 s), 60 s LnRMSSD60 s)and 90 s LnRMSSD90 s). In addition, fifty male and twenty female cyclists completed a peak power output (PPO) test (including VO2peak) and 40 km time trial (40 km TT) before which they performed the LSCT as a standardized warm-up. Relationships between the LnRMSSD and PPO, VO2peak and 40 km TT time were studied.ResultsDue to the design of the LSCT, submaximal heart and breathing rate were similar at the end of stage 3 of the LSCT, as well as during the recovery periods. The highest reliability was found in LnRMSSD60 s (ICC: 0.97) with a typical error of the measurement (TEM: 5.8%). In line with this the strongest correlations were found between LnRMSSD60 s and PPO (r = 0.93[male]; 0.85[female]), VO2peak (r = 0.71[male]; 0.63[female];) and 40 km TT (r = – 0.83[male]; – 0.63[female]).ConclusionsLnRMSSD60 s can be measured reliably after the LSCT and can predict PPO, VO2peak and 40 km TT performance well in trained-to-elite cyclists. These findings suggest that recovery LnRMSSD can potentially play an important role in monitoring and fine-tuning training prescriptions in trained-to-elite cyclists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call