Abstract

Thermoregulatory changes may influence the rats' prolonged physical performance and are commonly evaluated during treadmill running. Therefore, we determined the reliability of performance and thermoregulatory parameters in rats subjected to incremental-speed exercises (i.e., we assessed whether the testing protocol provides measurements that are consistent and free from error). Twenty rats were subjected to two sessions of incremental exercises at 24 °C, separated by 48 h, until they were fatigued. The rats' performance and thermoregulatory responses were determined, and values concerning the reliability of these parameters [e.g., intraclass correlation coefficient (ICC) and minimal detectable change (MDC)] were calculated. Our data revealed that the core temperature (TCORE) at fatigue and heat loss threshold were the most reproducible parameters, showing good reliability (ICC between 0.75 and 0.90). Moreover, all performance parameters assessed, the change in TCORE, the rate of TCORE increase, and the TCORE increase-to-distance traveled ratio presented moderate reliability. We then investigated whether changes in performance and thermoregulation induced by a warm environment were greater than the MDC95% values determined in the first experiment. Eight rats were subjected to incremental exercises at two environmental conditions: 24 °C and 31 °C. Individual analyses showed that most rats presented thermoregulatory differences between exercises at 31 °C and 24 °C greater than the calculated MDC95% values; this was not the case for their performance. In conclusion, we provide data on the reliability of rats’ performance and thermoregulatory parameters during incremental-speed running. Also, the exercise in a warm environment produced detectable thermoregulatory changes relative to the exercise under temperate conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call